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The application of some properties of the U(3) basis algebra to the calculation 
of the SC 7r bond matrix order is shown, for certain states of 6-electron molecular 
systems possessing a twofold symmetry axis not passing through any ~r center. 
Pyridazine is used as a numerical example. 

Key words: Bond order - U(3) algebra - ~- excited states 

I. Introduction 

We are interested in applying more general algebras to molecular calculations. We 
have already employed the U(2) algebra to 4-electron cases [1]; we shall now use 
the U(3) algebra for 6-electron molecules, in order to calculate the 7r bond order 
matrix P for certain states. These obey n~ + nh = I [2], where nz is a diagonal matrix 
with half the occupation numbers of  the lowest energy levels, nh a diagonal matrix 
with half the occupation numbers of the associated highest energy levels, and ! the 
unit matrix. The even rr system must possess a binary symmetry axis not passing 
through any 7r center. The SC bond orders are obtained without calculating the 
MO's. The basis functions split into two groups, one symmetric and the other 
antisymmetric with respect to the axis. The variational principle is thus applied 
separately for each of the two groups. Electron interaction is considered through a 
compromise Hamiltonian [1] between the ground state and the excited states 
considered, on the same footing [3]. 

Recently, the Clebsch-Gordan coefficients have been utilized for setting up 
symmetry-adapted linear combinations of atomic orbitals [4], revealing an increas- 
ing interest in this kind of problems. 

For the moment, the consequences of these applications are not easy to predict. 
In the meantime, let us quote Feynman's opinion: " . . .  The formulation is mathe- 
matically equivalent to the more usual formulations. There are, therefore, no 
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fundamentally new results. However, there is a pleasure in recognizing old things 
from a new point of view." [5] 

2. Formalism 

The splitting of the basis functions leads to the two matrix equations [1]: 

JP  + = symmetric; K P -  = symmetric 

where 

J.~ = H.~ + Hu,N+t-~; K.~ = Huv - Hu,N+,-v; 

O) 

f f i 

t•  
(2) 

H is the effective Hamiltonian, there are N electrons, X~ is the coefficient of atomic 
orbital tz whose occupation number is (2n*), and the + or - signs label respectively 
the symmetric or antisymmetric levels. 

Bond orders are determined through Q matrices defined by Q ~ = 2P ~ - L These 
are N/2-dimensional, for P.v = P++P2v and Pu,N+I-~ = P ~  - Puv (I*, v = 1 . . .  N/2), 
and satisfy 

JQ + = symmetric; K Q -  = symmetric (3) 

(Q+), = Q+; (Q-)a = Q- .  (4) 

With electronic interaction, Eqs. (3) take the form [1]: 

[2J + (C+I)  + ( C - I )  + (C+Q +) + ( C - Q - ) ] Q  + = symmetric 
(5) 

[2K + ( C - I )  + (C+I)  + ( C - Q  +) + ( C + Q - ) ] Q  - = symmetric. 

The basic matrices of the U(3) group, through which any 3 • 3 real symmetric 
matrix may be expressed, are the unit matrix and [6]: 

(i ~ 1(i ~ i ) ( i ' ! )  F1 = - 1  ; F 2 = 7 7  ~ 1 ; F 3 =  0 ; 

0 0 - 0 

(!0i) (i0i) ,6, F 4 =  0 ; F ~ =  0 

0 1 

We shall follow the Einstein convention in our formulae, avoiding the summation 
sign. The F matrices satisfy the anticommutation relations 

{F~, Fj} = d~jkFe + a4-8,j (7) 

where dljk are totally symmetric coefficients, with values 

dn2 = 2/V'3; d144 = I ; d15~ = - 1; d345 = 1 ; d222 =- -2 /V '3  

dzaa = 2/V/3; d24, = - 1 / ~ / 5 ;  d25a = - 1 / ~ / 3  (8) 
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Aside from those obtained by symmetry, these are the only non-zero coefficients. 

Let us now define 

d~ s = dnkqk; d~ = d~jqj; d = d~q~; q2 = q,qv (9) 

It is verified identically that 

d, ydy = {q2q, (10) 

and 

d, djdijk = ] dq~ - -~qZdk. (11) 

Let us now write our Q* matrices (we shall write just Q for shortness) under the form 

O = qo + q,F, = qo + q .F .  (12) 

In this case 

A = det (Q)  = qg - qoq 2 + �89 (13) 

It is easily verified that 

( q . F )  2 = q~F~qjFj = �89 Fj) = �89 qj(dtjkFk + {3~j) 

= .~q2 + �89 F, (14) 

and (q.F) a = ( q . e ) 2 q . e  = ~q2q .F  + � 8 9  = .~q2q.F + +d, qj{F,, Fy} = { q e q . F  + 
�88 qj(dijkFk + {3,y) = { q Z q . F  + �88 d~yFj + �89 by (10) 

(q.F)a = X3d + (~q2 + -~q~)q.F = k d  + q ~ q . f  05)  

so that 

03 = (qo + q ' F )  3 = q,] + 3 q ] q . F  + 3qo(q .F)  2 + (q .F )  a 

= qg + 3q~q.F  + 3qo({q 2 + �89  + { d  + q 2 q . F  (16) 

and if Qa = Q, the coefficients in (16) must be equal to those of(12), which leads to 

= 3 2 (17) qo qg + 2qoq 2 + �89 q, = qoq, + {qod~ + q2qv 

We have, therefore, the two equations 

d = 3qo(1 - qo 2 - 2q2), (18) 

qod, = ~(1 - 3@ - q2)q~. (19) 

We are faced with three cases: 

I - T h e  trivial solutions [7] areq, = 0, qo = 0, + I(Q = 0, _+I) 

I I - I f q o  = 0, it must be [ ~  and ~ (it turns out that A = 0) (20) 

I I I - I f q o  :# 0, by (19) we may write d~ = Aq, (21) 

It is clear that, by (10), if we multiply (21) by d,j, we obtain 

~q2qj = Adj  = A A q ,  = A2qj A s = -~qL (22) 



30 C.G. Bollini et al. 

In order for (21) to satisfy (18) and (19), the following equations must hold: 

Aq 2 = 3qo(1 - qg - 2qZ), 

Aqo = ](1 - 3qo 2 - q2). 

From (24) we obtain 

A lq2 
qo = - ~ "  + ~ - -  �9 

Replacing in (23) and simplifying, the possible solutions are: 

A l { A = { - - - > q o = � 8 9  or - a  z 
A S=~(A=+32-) ;  q o = - ~ - + ~  A - ] - - - ~ q o = - {  or 

A {A = 4/3 ---~qo = - 1/3 
A2=~6-;  A = + ~ ;  q ~  " A -4/3- - -~qo=+1/3  

(23) 

(24) 

+~ 

(25) 

Equation (21) takes the form 

I d~ = -}q~; q2 = �89 ] qo = �89 - ~ ( A  = O) (26) 

or d~ = -~q~ and the former solution changed in sign or also: 

[d, = -~q,; q2 = 4 = --�89 = 1) (27) qo 

obtained putting q~ = 2q[. 

We also have 

which is the last one with q~ changing sign, and having A = - 1. 

Due to the identities in the dijk coefficients, these equations do not determine q~, 
aside from Case I, which is known "apriori". Physically, this is due to the fact that 
we have not yet introduced the system's Hamiltonian. This is what we do next, 
leading to the missing mathematical conditions. 

We shall write all the equations for d, considering that there will be exactly similar 
equations for K. The matrix J being symmetric, it may be written in the form 

d = jo + j,F,. (28) 

In order to find the numbersJ'o, it, we shall use the following properties 

Wr (F~) = 0; Tr  (F~Fj) = �89 ({F~, Fj}) = {Tr (dljkFk + -~8,j) 
1 _4 = ~" 3 3,j Tr (I) = 2~,j. (29) 

Therefore 

Jo = -~Tr ( J ) ;  j~ = �89 (F~ J). (30) 
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As [Q, J]  = 0[1], [ q . F , j . F ]  = 0. This in general implies that q . F  is a function 
o f j . F  

q . F  = ~ a , ( j . F ) ' L  (31) 

We shall now define D~j = dijkj~, Di = D~zjl; D = Dj~. In ( j . F )  ", for n = 1 F~ 
appears withj~; for n = 2 (see (14) wi th j  instead of q) F~ is associated to D~; for 
n = 3 (see (15)) F~ appears again with j'~, etc. Hence, in the summation of (31), F~ 
appears only associated toj~ or to D~. We may then write q . F  = A I j . F  + A2D.F, 
o r  

q~ = hlji  + h2Di, (32) 

A1, A2 being functions of j .  Therefore, 

d~j = dijkq~ = d~jk(hzj~ + AzD~) = AxD~j + Azd~jkDk, 

d~ = d~zq~ = (hzD~ + h~d~z~Dk)(A~j~ + A2D~) 

= A~Dujl + 2hlh2DitDz + h~dilkD~Dk, 

d, = A~D, + 2A~A~j2j~ + ~ s �9 4_.~ D ,  )tz(s DJ~ - X/ O, 

using (I0) and (11) wi th j  instead of  q 

d, = ()t~ 4-;~A2'D DA~) A. (33) - a s  ~ ~ + ] ( A l a ~ j ~ +  

Finally, d = dzq, = d~(A~j, + AaD,), therefore, 

d (h~ - ~'~a~WA D AzD.D)  ](AzAzj ~ + + = xs =,, , + + DA~)(,~,j ~ AzD). (34) 

Besides 

q= = (A~A + AzD,)(A,j,  + AzD,) = a~j = + 2),~AzD + A~D.D. (35) 

In (33), (34) and (35), a~ and A= are unknown, but the coeff• are functions of 
j, all easily calculated through the corresponding definitions. Let us remark that, 
by (10), O . O  = D,D, = 4(j~):.  

3. Solving the Equations 

I. The three trivial solutions always exist, and are independent from the Hamiltonian 
[7]. 

II. The equation d = 0 (Eq. (34)) is a homogeneous, cubic equation in A1, A2, with 
)Aa)l),(a) (a : known coefficients. It may hence only determine the quotient ra = ,,1 / '2  

1, 2, 3), ra being the three solutions of the cubic equation (34). For each solution 
r~, the substitution Z] ~> = r~h~ a> in (35) equalized to one, gives a simple quadratic 
equation with two values for h2, + h~ a). Therefore, hi = _+ r~A~% These are then six 
solutions. 

III. The equation d~ = }q~ is solved through (32) and (33) 

~A1 = ](A,A2j 2 + A~D), (36) 

~A2 = A~ - x'A2;22J �9 (37) 
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From (36) we get: 

4DA~ 
A1 = 1 - 4jzA2" (38) 

Replacing (38) in (37), a cubic equation with known coefficients in ~a is obtained. 
The three corresponding solutions introduced in (38), together with q = �89 or - ~ ,  
and Eq. (32), give six solutions. Changing signs in A1, A2 and q0, we get six more 
solutions. 

III'. If  in the first three A1, A2 of III  we make the substitution ~,1,2 -+ 2tl,2, a q~ is 
obtained which corresponds to d~ = 4q~. This must be associated with q0 = - � 8 9  
(three solutions). Changing the signs of q~ and qo gives additional three solutions. 
Both in III and III '  all solutions are automatically normalized, to q2 = �89 and 
q2 = ~ (III'). 

We have altogether 27 solutions. Actually, in general there will be 27 for Q + and 
27 for Q-  (or for P+ and P- ) .  As explained in [1], the coupling is limited within the 
same case. 

In the 6-electron case, a direct solution of the SC bond orders is no more possible 
when electron interaction is introduced through the compromise Hamiltonian [1]. 
But we may iterate using the Q matrices, not needing the calculation of MO's. 

A further condition must be introduced, however, so as to preserve the non- 

crossing rule between levels belonging to the same symmetry. Those of different 
symmetry, of course, are completely free to mix in any way. As we do not calculate 
the MO's, we must ensure that on iterating we choose, among the cubic equations 
solutions, those which reproduce the same case. This is not hard to fix, keeping in 
mind that n~ are the eigenvalues of P ~. 

We know, from (14) applied to j, that 

D . F  = 2( / .F)  2 - ~_j2 

and as ( j -F)  2 =  ( J - jo)( J - jo) and q . F  = Q -  qo, 

becomes: 

Q - q o  = h z ( J -  jo) + 222( J2 - 2 j o J  + j~) - ~A2j 2. (40) 

Bearing in mind that p~: = �89 P+ = N+/6, applying this operator to x~+ gives 

2P + - I - 2pd + 1]x~+ = {(h~ - 4joh2)J + 2AzJ 2 + 2A2(jo 2 - ~j2)  _ h~jo}X'+ 

2 n ' +  - 1 - - 5 -  + 1 x ' +  = { ( a l  - 4 joa~)E~+  + 2 A ~ ( E ' + )  ~ 

+ 2hz(jo 2 _ }j2) _ Aljo}x, + 

N + 
2 n ' +  - - T  = ( a ,  - 4 joa2 )E ~+  + 2 a 2 ( E ' + )  = + 2 a = ( j o  ~ - ~ j = )  - a~ jo  ( 4 1 )  

(39) 

q . F  = A l j . F  + A2D.F 

E~+ being the eigenvalues of J. 
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The iteration is carried out in the following way: 

i) The solutions without interaction are first found as starting points. This is 
straightforward. 

2) The equations are set again, replacing J and K by the expressions between 
square brackets of (5), and working with them in the same way as before. Of the 
possible solutions arising from the cubic equations in each case, and the alter- 
natives in the h's signs, only one will verify Eqs. (41) or their analogues for the 
antisymmetric basis. This is not difficult to program. 

The serious trouble in some of these superexcited states (superexcited meaning 
excitations usually greater than the first ionization potential [8]) is the well-known 
convergence problem. This deserves much more attention, and we deal with it 
elsewhere [9]. As far as it concerns this paper, we shall just mention that we over- 
come it by introducing a convergence parameter ~: in the compromise Hamiltonian: 

Hu~ = H~ + ~Pu~Cuv. (42) 

This seems a neater approach than the damping procedures or energy-shift 
methods which appear in the literature for somewhat limited applications [9-11]. 

4. Example 

We apply the above formalism to the pyridazine molecule, with the atom labelling 
of Fig. 1. The Hiickel starting parameters are 

ac = 0; /3cc = 1; aN = 1.5; /3cN = 1.1; /3~N = 1.2 

which (see Table 1) give in the ground state a ~r contribution of 1.69D to the dipole 
moment, in agreement with the 1.79D value obtained by Pukanic et al. [12] with a 
modified PPP treatment. The Coulomb integrals between/~ and v atoms appearing 
in C,v are picked from the Pariser-Parr table [13]. For shortness, instead of using 
spectroscopic notation, we shall refer to the symmetric eigenvalues as $1, $2, $3 
and to the antisymmetric ones as A1, A2, A3. 

We are dealing with the open-shell cases in the same way as the closed-shell ones, 
that is we are using the half-electron approximation [14, 15]. For the moment, 
our goal is simply the obtention of SC bond orders avoiding the MO calculation, 
but we shall return in detail elsewhere to this problem [9]. 

The table shows the SC P,v results for neighboring atoms (those for non-neigh- 
boring atoms are available under request), and the s ~ parameter. 

Fig. 1 

3 4 

N - - N  
1 6 
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T a b l e  1. SC bond orders Pu~ between atoms ~ and v for the 27 solutions of pyridazine, 
following the atom labelling of Fig. 1. Bond orders are shown only for neighboring atoms. ~ is 
the convergence parameter 

State P ~  P~z Paz P~z Pza Pa~ P~6 

Case I. Particular solutions 
(S~)2($2)2($3) 2 1 1 1 0 0 1 1 
SIA1S2A2S3Aa 1 1 1 0 0 0 0 
(A~)2(A2)2(A3) 2 1 1 1 0 0 - 1 - 1 

C a s e  I I .  N + = N -  

(S1)2(A1)2S~A2 1.138 0.936 0.925 0.732 0.597 0.035 0.261 1 
SI(AI)a(S2)2As 0.970 0.939 1.091 0.405 0.350 0.354 0.115 0.8 
(S1)2AI(Az)2Sa 1.191 0.921 0.888 0.470 0.110 -0 .522 0.222 0.8 
AI(S2)2S3(Aa) 2 0.720 1.114 1.166 -0.441 -0 .122 0.505 -0.215 - 0 . 8  
Sl(A2)2(Ss)2Aa 0.977 1.099 0.924 -0 .428 -0.341 -0 .317 -0.048 - 1  
S2A2(S3)2(Aa) z 0.774 1.104 1.122 -0 .724 -0 .592 -0.043 -0.255 - 1  

Case IIL N + ~ N -  
($1)2($2)2.,4183 1.065 0.961 0.974 0.325 0.316 0.856 0.839 1 
(S1)2S2A1A2Sa 1.131 0.947 0.922 0.383 0.238 0.189 0.507 1 
(S1)2S2(Sa)2A2 1.143 0.972 0.885 0.040 -0 .100  0.333 0.696 0.8 
SI(A1)2S2A2Aa 1.082 0.955 0.963 0.350 0.323 -0 .169 -0.209 1 
SI(S2)2A1SaAa 0.804 0.964 1.232 0.127 0.085 0.413 0.278 1 
(A1)2Sl(A2)2A3 1.124 0.948 0.928 0.381 0.290 -0 .782 -0 .606 1 
S~(Sa)2Aa(Sa) 2 0.800 1.085 1.115 -0 .365 -0 .280  0.783 0.589 - I  
SIA~Sa(A~)2A~ 1.156 1.072 0.772 -0 .137 -0 .084 -0 .392  -0 .220 - 1  
S1S2A2(Aa)2Sa 0.862 1.078 1.060 -0.353 -0 .309 0.162 0.239 - 1  
S~(A1)2A2(Aa) ~ 0.806 1.031 1.163 0.000 0.081 -0 .347 -0 .700 - 0 . 8  
S2AIA2Sa(Aa) z 0.789 1.085 1.126 -0 .360 -0.241 -0.203 -0 .500 - 1  
A1S3(A2)2(Aa) 2 0.889 1.068 1.043 -0.333 -0.303 -0.861 -0.811 - 1 

C a s e  III ' .  N + # N -  and n, = 1 or 0 
(81)2($2)2(A1) 2 1.103 0.943 0.954 0.674 0.647 0.685 0.649 I 
(S1)2(A1)2(A2) 2 1.154 0.928 0.918 0.825 0.491 -0 .674 -0 .070 1 
(S1)2(A~)2(Sa) 2 1.301 0.944 0.755 0.044 -0 .158 -0 .284 0.355 0.4 
(S2)2(A~)2(A3) 2 0.655 1.058 1.287 -0.005 0.147 0.280 -0 .379 - 0 . 4  
(S~)~(Sa)2(Aa) ~ 0.749 1.117 1.134 -0 .807 -0 .494 0.663 0.072 - 1  
(A~)2(Sa)2(As) ~ 0.829 1.096 1.075 -0 .684 -0 .630 -0 .694 -0 .616 - 1  

Case  I does  n o t  d e p e n d  on  the  ~ va lue  [7]; the  th ree  so lu t ions  c o r r e s p o n d  re-  

spec t ive ly  t o :  N + = N ,  N -  = 0;  eve ry  n~ = �89 (Ha l l ' s  s t a n d a r d  re fe rence  s ta te  

[16]); N -  = N ,  N + = 0. 

Case  I I  impl ies  N + = N - ,  t ha t  is n * = 1, �89 o r  0. 

I n  Case  I I I ,  N + # N - .  T h e  h a l f - o c c u p a t i o n a l  n u m b e r s  n * m a y  be  1, �89 o r  0, be ing  

l imi ted  to  1 a n d  0 fo r  Case  I I I ' .  

I n  shor t ,  t he  app l i ca t ion  o f  genera l  g r o u p  a lgebra  pe rmi t s  a d i f ferent  a p p r o a c h  to  

t he  p r o b l e m  o f  the  d i rec t  ca l cu la t ion  o f  the  SC 7r b o n d  o r d e r  mat r ix .  

F ina l ly ,  let  us r e m a r k  t h a t  w h e n  pass ing  f r o m  the  4 -e lec t ron  to  the  6-e lec t ron  ease,  

the  c o n d i t i o n  n, + n~ = I m a k e s  the  9 so lu t ions  b e c o m e  27 solut ions .  T h e  U(4) 
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development  leads to 3 m2 = 34 = 81 solutions. A two ~- electron system has thus 

as un ique  solutions the three part icular  ones. 
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